Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.714
1.
Physiol Rep ; 12(9): e16039, 2024 May.
Article En | MEDLINE | ID: mdl-38740563

Evaluating reciprocal inhibition of the thigh muscles is important to investigate the neural circuits of locomotor behaviors. However, measurements of reciprocal inhibition of thigh muscles using spinal reflex, such as H-reflex, have never been systematically established owing to methodological limitations. The present study aimed to clarify the existence of reciprocal inhibition in the thigh muscles using transcutaneous spinal cord stimulation (tSCS). Twenty able-bodied male individuals were enrolled. We evoked spinal reflex from the biceps femoris muscle (BF) by tSCS on the lumber posterior root. We examined whether the tSCS-evoked BF reflex was reciprocally inhibited by the following conditionings: (1) single-pulse electrical stimulation on the femoral nerve innervating the rectus femoris muscle (RF) at various inter-stimulus intervals in the resting condition; (2) voluntary contraction of the RF; and (3) vibration stimulus on the RF. The BF reflex was significantly inhibited when the conditioning electrical stimulation was delivered at 10 and 20 ms prior to tSCS, during voluntary contraction of the RF, and during vibration on the RF. These data suggested a piece of evidence of the existence of reciprocal inhibition from the RF to the BF muscle in humans and highlighted the utility of methods for evaluating reciprocal inhibition of the thigh muscles using tSCS.


Spinal Cord Stimulation , Thigh , Humans , Male , Spinal Cord Stimulation/methods , Adult , Thigh/physiology , Thigh/innervation , Muscle, Skeletal/physiology , Muscle, Skeletal/innervation , Muscle Contraction/physiology , Transcutaneous Electric Nerve Stimulation/methods , Young Adult , H-Reflex/physiology , Femoral Nerve/physiology , Neural Inhibition/physiology , Quadriceps Muscle/physiology , Quadriceps Muscle/innervation , Hamstring Muscles/physiology , Electromyography
2.
Scand J Med Sci Sports ; 34(5): e14639, 2024 May.
Article En | MEDLINE | ID: mdl-38686976

BACKGROUND: Associations between muscle architecture and rate of force development (RFD) have been largely studied during fixed-end (isometric) contractions. Fixed-end contractions may, however, limit muscle shape changes and thus alter the relationship between muscle architecture an RFD. AIM: We compared the correlation between muscle architecture and architectural gearing and knee extensor RFD when assessed during dynamic versus fixed-end contractions. METHODS: Twenty-two recreationally active male runners performed dynamic knee extensions at constant acceleration (2000°s-2) and isometric contractions at a fixed knee joint angle (fixed-end contractions). Torque, RFD, vastus lateralis muscle thickness, and fascicle dynamics were compared during 0-75 and 75-150 ms after contraction onset. RESULTS: Resting fascicle angle was moderately and positively correlated with RFD during fixed-end contractions (r = 0.42 and 0.46 from 0-75 and 75-150 ms, respectively; p < 0.05), while more strongly (p < 0.05) correlated with RFD during dynamic contractions (r = 0.69 and 0.73 at 0-75 and 75-150 ms, respectively; p < 0.05). Resting fascicle angle was (very) strongly correlated with architectural gearing (r = 0.51 and 0.73 at 0-75 ms and 0.50 and 0.70 at 75-150 ms; p < 0.05), with gearing in turn also being moderately to strongly correlated with RFD in both contraction conditions (r = 0.38-0.68). CONCLUSION: Resting fascicle angle was positively correlated with RFD, with a stronger relationship observed in dynamic than isometric contraction conditions. The stronger relationships observed during dynamic muscle actions likely result from different restrictions on the acute changes in muscle shape and architectural gearing imposed by isometric versus dynamic muscle contractions.


Isometric Contraction , Torque , Humans , Male , Isometric Contraction/physiology , Young Adult , Adult , Quadriceps Muscle/physiology , Quadriceps Muscle/anatomy & histology , Quadriceps Muscle/diagnostic imaging , Running/physiology , Knee Joint/physiology , Muscle Strength/physiology , Biomechanical Phenomena
3.
J Sport Rehabil ; 33(4): 275-281, 2024 May 01.
Article En | MEDLINE | ID: mdl-38604600

CONTEXT: Injury-related fear and quadriceps strength are independently associated with secondary anterior cruciate ligament (ACL) injury risk. It is not known whether injury-related fear and quadriceps strength are associated, despite their individual predictive capabilities of secondary ACL injury. The purpose of this study was to examine the association between injury-related fear and quadriceps strength in individuals at least 1 year after ACL reconstruction (ACLR). DESIGN: Cross-sectional study. METHODS: Forty participants between the ages of 18 and 35 years at least 1 year post unilateral primary ACLR. Participants completed the Tampa Scale of Kinesiophobia-11 (TSK-11) and a standard isokinetic quadriceps strength assessment using the Biodex Isokinetic Dynamometer. Pearson Product-Moment correlations were used to examine the linear association between the TSK-11 scores and peak torque (in nanometers per kilogram) for each limb and between the TSK-11 scores and limb symmetry indices for each limb. Pearson Product-Moment correlation coefficients (r) were interpreted as very high (.90-1.00), high (.70-.90), moderate (.50-.70), low (.30-.50), and no correlation (.00-.30). RESULTS: The average TSK-11 score was 18.2 (5.3), average ACLR peak quadriceps torque was 1.9 (0.50) N·m/kg, average contralateral peak quadriceps torque was 2.3 (0.48) N·m/kg, and average limb symmetry index was 85.3% (12.6%). There was no statistically significant correlation between the TSK-11 and peak quadriceps torque on the ACLR limb (r = .12, P = .46), the TSK-11 and contralateral limb (r = .29, P = .07), or the TSK-11 and limb symmetry index (r = -.18, P = .27). CONCLUSIONS: There was no association between kinesiophobia and peak isokinetic quadriceps strength in individuals at least 1 year post-ACLR. Both factors, independently, have been shown to influence risk of secondary injury in patients after ACLR.


Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Fear , Muscle Strength , Quadriceps Muscle , Humans , Quadriceps Muscle/physiology , Muscle Strength/physiology , Cross-Sectional Studies , Male , Adult , Female , Young Adult , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Injuries/physiopathology , Adolescent , Muscle Strength Dynamometer
4.
J Physiol ; 602(10): 2287-2314, 2024 May.
Article En | MEDLINE | ID: mdl-38619366

The physiological mechanisms determining the progressive decline in the maximal muscle torque production capacity during isometric contractions to task failure are known to depend on task demands. Task-specificity of the associated adjustments in motor unit discharge rate (MUDR), however, remains unclear. This study examined MUDR adjustments during different submaximal isometric knee extension tasks to failure. Participants performed a sustained and an intermittent task at 20% and 50% of maximal voluntary torque (MVT), respectively (Experiment 1). High-density surface EMG signals were recorded from vastus lateralis (VL) and medialis (VM) and decomposed into individual MU discharge timings, with the identified MUs tracked from recruitment to task failure. MUDR was quantified and normalised to intervals of 10% of contraction time (CT). MUDR of both muscles exhibited distinct modulation patterns in each task. During the 20% MVT sustained task, MUDR decreased until ∼50% CT, after which it gradually returned to baseline. Conversely, during the 50% MVT intermittent task, MUDR remained stable until ∼40-50% CT, after which it started to continually increase until task failure. To explore the effect of contraction intensity on the observed patterns, VL and VM MUDR was quantified during sustained contractions at 30% and 50% MVT (Experiment 2). During the 30% MVT sustained task, MUDR remained stable until ∼80-90% CT in both muscles, after which it continually increased until task failure. During the 50% MVT sustained task the increase in MUDR occurred earlier, after ∼70-80% CT. Our results suggest that adjustments in MUDR during submaximal isometric contractions to failure are contraction modality- and intensity-dependent. KEY POINTS: During prolonged muscle contractions a constant motor output can be maintained by recruitment of additional motor units and adjustments in their discharge rate. Whilst contraction-induced decrements in neuromuscular function are known to depend on task demands, task-specificity of motor unit discharge behaviour adjustments is still unclear. In this study, we tracked and compared discharge activity of several concurrently active motor units in the vastii muscles during different submaximal isometric knee extension tasks to failure, including intermittent vs. sustained contraction modalities performed in the same intensity domain (Experiment 1), and two sustained contractions performed at different intensities (Experiment 2). During each task, motor units modulated their discharge rate in a distinct, biphasic manner, with the modulation pattern depending on contraction intensity and modality. These results provide insight into motoneuronal adjustments during contraction tasks posing different demands on the neuromuscular system.


Isometric Contraction , Humans , Isometric Contraction/physiology , Male , Adult , Female , Torque , Young Adult , Muscle, Skeletal/physiology , Motor Neurons/physiology , Electromyography , Quadriceps Muscle/physiology , Recruitment, Neurophysiological/physiology
5.
PLoS One ; 19(4): e0302474, 2024.
Article En | MEDLINE | ID: mdl-38669272

Evaluation of muscle strength imbalance can be an important element in optimizing the training process of soccer players. The purpose of the study was to examine isokinetic peak torque (PT) and total work (TW) exerted by both knee extensors (quadriceps or Q) and flexors (hamstrings or H), intra-limb imbalance and the magnitude and direction of inter-limb asymmetry in top elite senior (n = 109) and junior (n = 74) soccer players. An isokinetic dynamometry was used to measure maximum peak torque of quadriceps (PT-Q) and hamstrings (PT-H) at an angular velocity of 60° ·s-1, as well as the total work for extensors (TW-Q) and flexors (TW-H) at an angular velocity of 240° ·s-1 in the dominant (DL) and non-dominant leg (NDL) during concentric muscle contraction. Intra-limb imbalance and inter-limb asymmetries were calculated using a standard equation. Statistical analysis using t-test and Mann-Whitney U-test revealed: (a) no differences (p > 0.05) between groups for PT-Q and PT-H, (b) greater strength levels (p < 0.05) for TW-Q and TW-H of senior players than juniors, and (c) no differences (p > 0.05) between groups for intra-limb imbalance and inter-limb asymmetry. Additionally, Pearson's chi-kwadrat (χ2) analysis showed no differences (p > 0.05) between groups for intra-limb imbalance and inter-limb asymmetry in relation to the 'normative' values accepted in the literature that indicate an increase in the risk of knee injury. This study shows that isokinetic assessment can be an important tool to identify imbalances/asymmetries and to develop strategies to reduce the risk of muscle injury.


Muscle Strength , Soccer , Torque , Soccer/physiology , Humans , Muscle Strength/physiology , Male , Young Adult , Adolescent , Adult , Muscle Contraction/physiology , Athletes , Quadriceps Muscle/physiology , Muscle, Skeletal/physiology , Hamstring Muscles/physiology , Muscle Strength Dynamometer
6.
J Sport Rehabil ; 33(4): 267-274, 2024 May 01.
Article En | MEDLINE | ID: mdl-38560999

CONTEXT: The hamstrings are the most commonly injured muscle in sports and are especially injury prone in lengthened positions. Measuring knee muscle strength in such positions could be relevant to establish injury risk. Handheld dynamometry has been shown to be a valid, reliable, and practical tool to measure isometric muscle strength clinically. The aim of this study was to assess the validity and reliability of the assessment of isometric knee muscle strength with a handheld dynamometer (HHD) at various muscle lengths, by modifying the hip and knee angles during testing. DESIGN: Concurrent validity and test-retest reliability. METHODS: Thirty young healthy participants were recruited. Hamstring and quadriceps isometric strength was measured with a HHD and with an isokinetic dynamometer, over 2 testing sessions, in a randomized order. Isometric strength was measured on the right lower limb in 6 different positions, with the hip at either 0° or 80° of flexion and the knee at either 30°, 60°, or 90° of flexion. Pearson and Spearman correlations were used to assess the validity, and intraclass correlation coefficients were calculated to establish the test-retest reliability of the HHD. RESULTS: Good to excellent reliability and moderate to high validity were found in all the tested muscle length positions, except for the hamstrings in a seated position with the knee extended at 30°. CONCLUSIONS: The use of a HHD is supported in the clinical setting to measure knee muscle strength at varying muscle lengths in healthy adults, but not for the hamstrings in a lengthened position (hip flexed and knee extended). These results will have to be confirmed in sport-specific populations.


Hamstring Muscles , Isometric Contraction , Muscle Strength Dynamometer , Muscle Strength , Quadriceps Muscle , Humans , Reproducibility of Results , Male , Young Adult , Hamstring Muscles/physiology , Quadriceps Muscle/physiology , Female , Muscle Strength/physiology , Isometric Contraction/physiology , Adult
7.
J Strength Cond Res ; 38(4): 671-680, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38513175

ABSTRACT: Mongold, SJ, Ricci, AW, Hahn, ME, and Callahan, DM. Skeletal muscle compliance and echogenicity in resistance-trained and nontrained women. J Strength Cond Res 38(4): 671-680, 2024-Noninvasive assessment of muscle mechanical properties in clinical and performance settings tends to rely on manual palpation and emphasizes examination of musculotendinous stiffness. However, measurement standards are highly subjective. The purpose of the study was to compare musculotendinous stiffness in adult women with varying resistance training history while exploring the use of multiple tissue compliance measures. We identified relationships between tissue stiffness and morphology, and tested the hypothesis that combining objective measures of morphology and stiffness would better predict indices of contractile performance. Resistance-trained (RT) women (n = 11) and nontrained (NT) women (n = 10) participated in the study. Muscle echogenicity and morphology were measured using B-mode ultrasonography (US). Vastus lateralis (VL) and patellar tendon (PT) stiffness were measured using digital palpation and US across submaximal isometric contractions. Muscle function was evaluated during maximal voluntary isometric contraction (MVIC) of the knee extensors (KEs). Resistance trained had significantly greater PT stiffness and reduced echogenicity (p < 0.01). Resistance trained also had greater strength per body mass (p < 0.05). Muscle echogenicity was strongly associated with strength and rate of torque development (RTD). Patellar tendon passive stiffness was associated with RTD normalized to MVIC (RTDrel; r = 0.44, p < 0.05). Patellar tendon stiffness was greater in RT young women. No predictive models of muscle function incorporated both stiffness and echogenicity. Because RTDrel is a clinically relevant measure of rehabilitation in athletes and can be predicted by digital palpation, this might represent a practical and objective measure in settings where RTD may not be easy to measure directly.


Knee Joint , Muscle, Skeletal , Adult , Humans , Female , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Knee Joint/physiology , Muscle Contraction/physiology , Quadriceps Muscle/physiology , Isometric Contraction/physiology , Ultrasonography , Muscle Strength/physiology , Torque
8.
J Strength Cond Res ; 38(4): 787-790, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38513182

ABSTRACT: Nunes, JP, Blazevich, AJ, Schoenfeld, BJ, Kassiano, W, Costa, BDV, Ribeiro, AS, Nakamura, M, Nosaka, K, and Cyrino, ES. Determining changes in muscle size and architecture after exercise training: One site does not fit all. J Strength Cond Res 38(4): 787-790, 2024-Different methods can be used to assess muscle hypertrophy, but the effects of training on regional changes in muscle size can be detected only using direct muscle measurements such as muscle thickness, cross-sectional area, or volume. Importantly, muscle size increases vary across regions within and between muscles after resistance training programs (i.e., heterogeneous, or nonuniform, muscle hypertrophy). Muscle architectural changes, including fascicle length and pennation angle, after resistance and stretch training programs are also region-specific. In this paper, we show that the literature indicates that a single-site measure of muscle shape does not properly capture the effects achieved after exercise training interventions and that conclusions concerning the magnitude of muscle adaptations can vary substantially depending on the muscle site to be examined. Thus, we propose that measurements of muscle size and architecture should be completed at multiple sites across regions between the agonist muscles within a muscle group and along the length of the muscles to provide an adequate picture of training effects.


Muscle, Skeletal , Resistance Training , Humans , Muscle, Skeletal/physiology , Muscle Strength/physiology , Quadriceps Muscle/physiology , Exercise/physiology , Resistance Training/methods , Hypertrophy
9.
Acta Physiol (Oxf) ; 240(5): e14129, 2024 May.
Article En | MEDLINE | ID: mdl-38459757

AIM: The influence on acute skeletal muscle transcriptomics of neuromuscular electrical stimulation (NMES), as compared to established exercises, is poorly understood. We aimed to investigate the effects on global mRNA-expression in the quadriceps muscle early after a single NMES-session, compared to the effects of voluntary knee extension exercise (EX), and to explore the discomfort level. METHODS: Global vastus lateralis muscle gene expression was assessed (RNA-sequencing) in 30 healthy participants, before and 3 h after a 30-min session of NMES and/or EX. The NMES-treatment was applied using textile electrodes integrated in pants and set to 20% of each participant's pre-tested MVC mean (±SD) 200 (±80) Nm. Discomfort was assessed using Visual Analogue Scale (VAS, 0-10). The EX-protocol was performed at 80% of 1-repetition-maximum. RESULTS: NMES at 20% of MVC resulted in VAS below 4 and induced 4448 differentially expressed genes (DEGs) with 80%-overlap of the 2571 DEGs of EX. Genes well-known to be up-regulated following exercise, for example, PPARGC1A, ABRA, VEGFA, and GDNF, were also up-regulated by NMES. Gene set enrichment analysis demonstrated many common pathways after EX and NMES. Also, some pathways were exclusive to either EX, for example, muscle tissue proliferation, or to NMES, for example, neurite outgrowth and connective tissue proliferation. CONCLUSION: A 30-min NMES-session at 20% of MVC with NMES-pants, which can be applied with an acceptable level of discomfort, induces over 4000 DEGs, of which 80%-overlap with DEGs of EX. NMES can induce exercise-like molecular effects, that potentially can lead to health and performance benefits in individuals who are unable to perform resistance exercise.


Electric Stimulation , Muscle, Skeletal , Transcriptome , Humans , Male , Adult , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Electric Stimulation/methods , Female , Quadriceps Muscle/metabolism , Quadriceps Muscle/physiology , Young Adult , Exercise/physiology
10.
Clin Biomech (Bristol, Avon) ; 113: 106213, 2024 03.
Article En | MEDLINE | ID: mdl-38458001

BACKGROUND: Leg extensions should be avoided in the early stages after anterior cruciate ligament reconstruction because the force exerted by the quadriceps muscle leads to anterior tibial displacement. To allow for safe quadriceps training in the knee extension range during this period, we devised the leaf spring exercise, which involves placing subjects in the prone position with their knee slightly flexed and instructing them to perform maximum isometric quadriceps contractions while supporting the proximal region of the lower leg's anterior surface and immobilizing the femur's posterior surface to prevent lifting. The current study aimed to examine the safety of Leaf spring exercise by determining the femur-tibia relationship using ultrasound imaging. METHODS: This controlled laboratory study included patients with unilateral anterior cruciate ligament-deficient knees (8 men and 8 women; age, 24.2 ± 8.3 years) who were instructed to perform Leaf spring exercise of both lower limbs. We measured the femur-tibia-step-off, which indicates the distance between the last point of the medial and lateral condyles of the femur and posterior margin of the tibial plateau, as a parameter to evaluate anterior tibial displacement via ultrasound diagnostic device. Further, peak torque of the quadriceps muscle was calculated using force measurement device. FINDINGS: No difference in anterior tibial displacement and peak torque was observed between the uninjured and injured sides during Leaf spring exercise. INTERPRETATION: Leaf spring exercise may add some strain on the reconstructed anterior cruciate ligament; hence, it can be considered a safe quadriceps exercise in the knee extension range.


Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Male , Humans , Female , Adolescent , Young Adult , Adult , Quadriceps Muscle/physiology , Anterior Cruciate Ligament Injuries/surgery , Biomechanical Phenomena , Knee Joint/physiology , Anterior Cruciate Ligament Reconstruction/methods
11.
Exp Gerontol ; 188: 112378, 2024 Apr.
Article En | MEDLINE | ID: mdl-38355067

Age-associated remodeling processes affect the intramuscular connective tissue (IMCT) network, which may significantly impair muscle function. Thus, we aimed to test whether including exercises shown to efficiently target the IMCT to a conventional resistance exercise intervention (CONV) would result in greater functional gains as compared to CONV alone. Fifty-three men and women (66.2 ± 3.3 years) were assigned to either CONV (n = 15), multimodal training (MULTI; n = 17) or a control (CTRL; n = 21) group. All subjects were tested at baseline, and those assigned to CONV or MULTI underwent a 16-week training intervention. The CONV group followed a progressive resistance training program, in which the number of weekly training sessions gradually increased from 1 to 3. In the MULTI group, one of these sessions was replaced with plyometric training, followed by self-myofascial release. Testing included maximal strength and power, imaging-based muscle volume, architecture, and functional performance. The intervention effects were analyzed using two- or three-way repeated measures ANOVA models (α = 0.05). Briefly, the maximal knee extension isometric contraction, one-repetition maximum, and isokinetic peak torque increased in all groups (p < 0.05), albeit to a lesser extent in CTRL. On the other hand, quadriceps femoris muscle volume (p = 0.019) and vastus lateralis pennation angle (p < 0.001) increased only in the MULTI group. Handgrip strength did not change in response to the intervention (p = 0.312), whereas Sit-to-Stand performance improved in all groups after the first 8-wks, but only in MULTI and CONV after 16-wks (all p < 0.001). In conclusion, we found that a resistance training intervention in which one weekly training session is replaced by plyometric training is feasible and as effective as a program consisting solely of conventional strength training sessions for inducing gains in muscle strength and function in older adults. Muscle size and architecture improved only in the MULTI group. German Clinical Trials: DRKS00015750.


Resistance Training , Male , Humans , Female , Aged , Hand Strength , Muscle Strength/physiology , Quadriceps Muscle/diagnostic imaging , Quadriceps Muscle/physiology , Isometric Contraction , Muscle, Skeletal/physiology
12.
J Appl Physiol (1985) ; 136(5): 1015-1039, 2024 May 01.
Article En | MEDLINE | ID: mdl-38328821

The efficacy of the NASA SPRINT exercise countermeasures program for quadriceps (vastus lateralis) and triceps surae (soleus) skeletal muscle health was investigated during 70 days of simulated microgravity. Individuals completed 6° head-down-tilt bedrest (BR, n = 9), bedrest with resistance and aerobic exercise (BRE, n = 9), or bedrest with resistance and aerobic exercise and low-dose testosterone (BRE + T, n = 8). All groups were periodically tested for muscle (n = 9 times) and aerobic (n = 4 times) power during bedrest. In BR, surprisingly, the typical bedrest-induced decrements in vastus lateralis myofiber size and power were either blunted (myosin heavy chain, MHC I) or eliminated (MHC IIa), along with no change (P > 0.05) in %MHC distribution and blunted quadriceps atrophy. In BRE, MHC I (vastus lateralis and soleus) and IIa (vastus lateralis) contractile performance was maintained (P > 0.05) or increased (P < 0.05). Vastus lateralis hybrid fiber percentage was reduced (P < 0.05) and energy metabolism enzymes and capillarization were generally maintained (P > 0.05), while not all of these positive responses were observed in the soleus. Exercise offsets 100% of quadriceps and approximately two-thirds of soleus whole muscle mass loss. Testosterone (BRE + T) did not provide any benefit over exercise alone for either muscle and for some myocellular parameters appeared detrimental. In summary, the periodic testing likely provided a partial exercise countermeasure for the quadriceps in the bedrest group, which is a novel finding given the extremely low exercise dose. The SPRINT exercise program appears to be viable for the quadriceps; however, refinement is needed to completely protect triceps surae myocellular and whole muscle health for astronauts on long-duration spaceflights.NEW & NOTEWORTHY This study provides unique exercise countermeasures development information for astronauts on long-duration spaceflights. The NASA SPRINT program was protective for quadriceps myocellular and whole muscle health, whereas the triceps surae (soleus) was only partially protected as has been shown with other programs. The bedrest control group data may provide beneficial information for overall exercise dose and targeting fast-twitch muscle fibers. Other unique approaches for the triceps surae are needed to supplement existing exercise programs.


Exercise , Muscle, Skeletal , Myosin Heavy Chains , Quadriceps Muscle , Weightlessness Simulation , Humans , Male , Quadriceps Muscle/physiology , Quadriceps Muscle/metabolism , Weightlessness Simulation/methods , Adult , Exercise/physiology , Myosin Heavy Chains/metabolism , Muscle, Skeletal/physiology , Muscle, Skeletal/metabolism , United States National Aeronautics and Space Administration , United States , Bed Rest/adverse effects , Testosterone/metabolism , Testosterone/blood , Space Flight/methods , Muscular Atrophy/prevention & control , Muscular Atrophy/physiopathology , Resistance Training/methods , Weightlessness/adverse effects , Muscle Strength/physiology
13.
J Sports Sci ; 42(1): 85-101, 2024 Jan.
Article En | MEDLINE | ID: mdl-38393985

This study examined the influence of resistance training (RT) proximity-to-failure, determined by repetitions-in-reserve (RIR), on quadriceps hypertrophy and neuromuscular fatigue. Resistance-trained males (n = 12) and females (n = 6) completed an 8-week intervention involving two RT sessions per week. Lower limbs were randomised to perform the leg press and leg extension exercises either to i) momentary muscular failure (FAIL), or ii) a perceived 2-RIR and 1-RIR, respectively (RIR). Muscle thickness of the quadriceps [rectus femoris (RF) and vastus lateralis (VL)] and acute neuromuscular fatigue (i.e., repetition and lifting velocity loss) were assessed. Data was analysed with Bayesian linear mixed-effect models. Increases in quadriceps thickness (average of RF and VL) from pre- to post-intervention were similar for FAIL [0.181 cm (HDI: 0.119 to 0.243)] and RIR [0.182 cm (HDI: 0.115 to 0.247)]. Between-protocol differences in RF thickness slightly favoured RIR [-0.036 cm (HDI: -0.113 to 0.047)], but VL thickness slightly favoured FAIL [0.033 cm (HDI: -0.046 to 0.116)]. Mean volume was similar across the RT intervention between FAIL and RIR. Lifting velocity and repetition loss were consistently greater for FAIL versus RIR, with the magnitude of difference influenced by the exercise and the stage of the RT intervention.


Terminating RT sets with a close proximity-to-failure (e.g., 1- to 2-RIR) can be sufficient to promote similar hypertrophy of the quadriceps as reaching momentary muscular failure in resistance-trained individuals over eight weeks, but the overall influence of proximity-to-failure on muscle-specific hypertrophy may also depend on other factors (e.g., exercise selection, order, and subsequent musculature targeted).Due to high repetition loss (from the first to final set) when sets are terminated at momentary muscular failure, performing RT with 1- to 2-RIR allows for similar volume load and repetition volume accumulation as reaching momentary muscular failure across eight weeks, possibly influencing the overall RT stimulus achieved.Performing RT to momentary muscular failure consistently induces higher levels of acute neuromuscular fatigue versus RT performed with 1- to 2-RIR; however, improved fatigue resistance overtime may attenuate acute neuromuscular fatigue and subsequent repetition loss (but may depend on the exercise performed).


Resistance Training , Male , Female , Humans , Resistance Training/methods , Bayes Theorem , Muscle Strength/physiology , Adaptation, Physiological , Quadriceps Muscle/physiology , Hypertrophy , Muscle, Skeletal/physiology
14.
Clin Biomech (Bristol, Avon) ; 113: 106212, 2024 03.
Article En | MEDLINE | ID: mdl-38387145

BACKGROUND: Joint moment arm is a major element that determines joint torque. This study aimed to investigate factors associated with knee extensor and valgus moment arms of the patellar tendon in older individuals with and without knee osteoarthritis. METHODS: Thirty-six participants with knee osteoarthritis (mean age, 78.1 ± 6.0 years) and 43 healthy controls (mean age, 73.0 ± 6.3 years) were analyzed. Magnetic resonance images (MRI) from the knee joint and thigh were acquired using a 3.0 T MRI scanner. The three-dimensional moment arm was defined as the distance between the contact point of the tibiofemoral joint and the patellar tendon line. The three-dimensional moment arm was decomposed into sagittal and coronal components, which were calculated as knee extensor and valgus moment arms, respectively. Quadriceps muscle volume, epicondylar width, bisect offset, Insall-Salvati ratio, and Kellgren-Lawrence grade were assessed. Multiple regression analyses were performed in the healthy control and knee osteoarthritis groups, with knee extensor and valgus moment arms as dependent variables. FINDINGS: Knee extensor moment arm was significantly associated with epicondylar width and the Insall-Salvati ratio in the healthy control group and with Kellgren-Lawrence grade, epicondylar width, and quadriceps muscle volume in the knee osteoarthritis group. Valgus knee moment arm was significantly associated with bisect offset in both the groups. INTERPRETATION: Knee size, osteoarthritis severity, and quadriceps muscle volume affect the knee extensor moment arm in knee osteoarthritis, whereas lateral patellar displacement affects the valgus knee moment arms in older individuals with and without knee osteoarthritis.


Osteoarthritis, Knee , Patellar Ligament , Humans , Aged , Aged, 80 and over , Patellar Ligament/diagnostic imaging , Patellar Ligament/physiology , Osteoarthritis, Knee/diagnostic imaging , Knee Joint/diagnostic imaging , Knee Joint/physiology , Patella/physiology , Quadriceps Muscle/diagnostic imaging , Quadriceps Muscle/physiology
15.
Med Eng Phys ; 124: 104103, 2024 02.
Article En | MEDLINE | ID: mdl-38418031

Recent works have shown bioelectrical impedance spectroscopy (BIS) may assess tissue quality. The purpose of this project was to examine associations between ultrasound echo intensity (EI) of quadriceps muscles (vastus lateralis [VL], vastus medialis [VM], vastus intermedius [VI], rectus femoris [RF]) and BIS parameters (R0, R1, C, α, fp), and if the associations are specific to individual muscles or associated with a representation of the entire quadriceps. Twenty-two participants (age: 22 ± 4 years; BMI: 25.47 ± 3.26 kg/m2) participated in all study activities. Participants had transverse ultrasound scans of each individual quadriceps muscle taken at 25, 50, and 75 % of the muscle length to generate an average EI for the VL, VM, VI, and RF, which were further averaged to generate an EI for the entire quadriceps. For BIS, participants were seated with electrodes placed on the thigh to measure the segmental quadriceps. The Cole-impedance model parameters that best fit the BIS data for each participant was used for all analyses. Pearson's correlation coefficient (r) were calculated to determine associations between muscles' EI and BIS parameters. The results suggest averaged EI of individual VL, VM, VI, RF muscles and the average EI of the segmental quadriceps were significantly related to the R0, C, α metrics of the Cole-impedance model representing quadriceps segmental tissues. This supports that segmental BIS may be an appropriate technique for rapid evaluation of segmental muscle quality.


Quadriceps Muscle , Humans , Adolescent , Young Adult , Adult , Electric Impedance , Quadriceps Muscle/diagnostic imaging , Quadriceps Muscle/physiology , Ultrasonography
16.
J Strength Cond Res ; 38(5): e243-e252, 2024 May 01.
Article En | MEDLINE | ID: mdl-38373088

ABSTRACT: Beausejour, JP, Guinto, G, Artrip, C, Corvalan, A, Mesa, MF, Lebron, MA, and Stock, MS. Successful powerlifting in a unilateral, transtibial amputee: A descriptive case series. J Strength Cond Res 38(5): e243-e252, 2024-There are no reports in the literature of powerlifting success after amputation. We had the unique opportunity to characterize functional outcomes, strength, muscle contractility and size, and corticospinal excitability in an accomplished, competitive powerlifter (best competition squat = 205.0 kg, deadlift = 262.7 kg) with a unilateral, transtibial amputation relative to amputee controls. Four men (age range = 23-49 years) with unilateral, lower-limb amputation (3 transtibial, 1 transfemoral) participated in 1 laboratory visit. We assessed 10-m gait speed, the timed up and go (TUG) test, 5-time sit-to-stand performance (5TSTS), contractile properties of the vastus lateralis (VL) and medial gastrocnemius by tensiomyography, and VL cross-sectional area (CSA) by ultrasonography. Unilateral assessments for the intact limb included isokinetic knee extension and flexion torque and power and transcranial magnetic stimulation derived corticospinal excitability. An interview with the powerlifter provided contextual perspective. Compared with the control subjects, the powerlifter performed the 5TSTS faster (6.8%), exhibited faster VL contraction times (intact limb = 12.2%; residual limb = 23.9%), and showed larger VL CSA for the intact limb (46.7%). The powerlifter exhibited greater knee extension and flexion peak torque and mean power, particularly at 180°·s -1 , as well as greater corticospinal excitability for the intact VL (65.6%) and tibialis anterior (79.6%). By contrast, the control subjects were faster in the TUG (18.3%) and comfortable (13.0%) and fast (21.4%) in the 10-m walk test. The major themes of our interview included needing to modify lifting mechanics, persistence, and remarkable pain tolerance. Our findings highlight the impressive neuromuscular adaptations that are attainable after lower-limb amputation.


Amputees , Muscle Strength , Adult , Humans , Male , Middle Aged , Young Adult , Muscle Contraction/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Quadriceps Muscle/physiology , Tibia/surgery , Tibia/physiology , Weight Lifting/physiology
17.
J Sports Med Phys Fitness ; 64(5): 432-438, 2024 May.
Article En | MEDLINE | ID: mdl-38411044

BACKGROUND: The goal of this study was to verify whether anthropometric, physiological and neuromuscular factors, as well as training characteristics, could predict cycling performance during maximal incremental and time-to-exhaustion tests. METHODS: Twenty cyclists were evaluated: Anthropometric variables, knee extensor muscle activation and architecture, training history, and training volume were assessed. Second ventilatory threshold (VT2), maximal oxygen uptake (VO2MAX), and maximal power output (POMAX) were assessed during the incremental test. Muscle architecture of the vastus lateralis (VL) and rectus femoris (RF) muscles was evaluated bilaterally to calculate the mean thighs' muscle thickness, pennation angle and fascicle length, at rest condition. After that, time-to-exhaustion test at POMAX was performed. Muscle activation of the VL, RF and vastus medialis (VM) was evaluated of both legs. RESULTS: Cyclists' height (r2=0.37), experience time and training volume (r2=0.46) were predictors of POMAX (P<0.02), while cadence (r2=0.30) was the only predictive variable for the time-to-exhaustion performance (P<0.01). CONCLUSIONS: These results suggest that training characteristics and experience are important when training for incremental cycling conditions, whereas cadence (and its determinant variables) should be looked at during maximal and exhaustive conditions.


Athletic Performance , Bicycling , Oxygen Consumption , Humans , Bicycling/physiology , Male , Adult , Athletic Performance/physiology , Oxygen Consumption/physiology , Exercise Test , Muscle, Skeletal/physiology , Anthropometry , Quadriceps Muscle/physiology , Young Adult
18.
J Strength Cond Res ; 38(5): 985-990, 2024 May 01.
Article En | MEDLINE | ID: mdl-38349337

ABSTRACT: Tanji, F, Ohnuma, H, Ando, R, Yamanaka, R, Ikeda, T, and Suzuki, Y. Longer ground contact time is related to a superior running economy in highly trained distance runners. J Strength Cond Res 38(5): 985-990, 2024-Running economy is a key component of distance running performance and is associated with gait parameters. However, there is no consensus of the link between the running economy (RE), ground contact time, and footstrike patterns. Thus, this study aimed to clarify the relationship between RE, ground contact time, and thigh muscle cross-sectional area (CSA) in highly trained distance runners and to compare these parameters between 2 habitual footstrike patterns (midfoot vs. rearfoot). Seventeen male distance runners ran on a treadmill to measure RE and gait parameters. We collected the CSAs of the right thigh muscle using a magnetic resonance imaging scanner. The RE had a significant negative relationship with distance running performance ( r = -0.50) and ground contact time ( r = -0.51). The ground contact time had a significant negative relationship with the normalized CSAs of the vastus lateralis muscle ( r = -0.60) and hamstrings ( r = -0.54). No significant differences were found in RE, ground contact time, or normalized CSAs of muscles between midfoot ( n = 10) and rearfoot ( n = 7) strikers. These results suggest that large CSAs of knee extensor muscles results in short ground contact time and worse RE. The effects of the footstrike pattern on the RE appear insignificant, and the preferred footstrike pattern can be recommended for running in highly trained runners.


Gait , Running , Humans , Running/physiology , Male , Gait/physiology , Young Adult , Adult , Biomechanical Phenomena , Muscle, Skeletal/physiology , Quadriceps Muscle/physiology , Quadriceps Muscle/diagnostic imaging , Quadriceps Muscle/anatomy & histology , Athletic Performance/physiology , Hamstring Muscles/physiology , Hamstring Muscles/diagnostic imaging , Thigh/physiology , Thigh/anatomy & histology , Foot/physiology
19.
PLoS One ; 19(2): e0298304, 2024.
Article En | MEDLINE | ID: mdl-38358981

The use of wearable sensors for real-time monitoring of exercise-related measures has been extensively studied in recent years (e.g., performance enhancement, optimizing athlete's training, and preventing injuries). Surface electromyography (sEMG), which measures muscle activity, is a widely researched technology in exercise monitoring. However, due to their cumbersome nature, traditional sEMG electrodes are limited. In particular, facial EMG (fEMG) studies in physical training have been limited, with some scarce evidence suggesting that fEMG may be used to monitor exercise-related measurements. Altogether, sEMG recordings from facial muscles in the context of exercise have been examined relatively inadequately. In this feasibility study, we assessed the ability of a new wearable sEMG technology to measure facial muscle activity during exercise. Six young, healthy, and recreationally active participants (5 females), performed an incremental cycling exercise test until exhaustion, while facial sEMG and vastus lateralis (VL) EMG were measured. Facial sEMG signals from both natural expressions and voluntary smiles were successfully recorded. Stable recordings and high-resolution facial muscle activity mapping were achieved during different exercise intensities until exhaustion. Strong correlations were found between VL and multiple facial muscles' activity during voluntary smiles during exercise, with statistically significant coefficients ranging from 0.80 to 0.95 (p<0.05). This study demonstrates the feasibility of monitoring facial muscle activity during exercise, with potential implications for sports medicine and exercise physiology, particularly in monitoring exercise intensity and fatigue.


Facial Muscles , Quadriceps Muscle , Female , Humans , Electromyography , Feasibility Studies , Quadriceps Muscle/physiology , Electrodes
20.
Scand J Med Sci Sports ; 34(2): e14579, 2024 Feb.
Article En | MEDLINE | ID: mdl-38332685

BACKGROUND: Lower capacity to generate knee extension maximal voluntary force (MVF) has been observed in individuals affected with patellar tendinopathy (PT) compared to asymptomatic controls. This MVF deficit is hypothesized to emanate from alterations in corticospinal excitability (CSE). The modulation of CSE is intricately linked to the excitability levels at multiple sites, encompassing neurones within the corticospinal tract (CST), intracortical neurones within the primary motor cortex (M1), and the alpha motoneurone. The aim of this investigation was to examine the excitability of intracortical neurones, CST neurones, and the alpha motoneurone, and compare these between volleyball and basketball athletes with PT and matched asymptomatic controls. METHOD: Nineteen athletes with PT and 18 asymptomatic controls participated in this cross-sectional study. Transcranial magnetic stimulation was utilized to assess CST excitability, corticospinal inhibition (silent period, and short-interval cortical inhibition). Peripheral nerve stimulation was used to evaluate lumbar spine and alpha motoneurone excitability, including the evocation of lumbar-evoked potentials and maximal compound muscle action potential (MMAX ), and CSE with central activation ratio (CAR). Knee extension MVF was also assessed. RESULTS: Athletes with PT exhibited longer silent period duration and greater electrical stimulator output for MMAX , as well as lower MVF, compared to asymptomatic controls (p < 0.05). CONCLUSION: These findings indicate volleyball and basketball athletes with PT exhibit reduced excitability of the alpha motoneurone or the neuromuscular junction, which may be linked to lower MVF. Subtle alterations at specific sites may represent compensatory changes to excitability aiming to maintain efferent drive to the knee extensors.


Quadriceps Muscle , Tendinopathy , Humans , Quadriceps Muscle/physiology , Cross-Sectional Studies , Evoked Potentials, Motor/physiology , Pyramidal Tracts/physiology , Transcranial Magnetic Stimulation , Athletes , Muscle, Skeletal/physiology
...